角平分线的性质 三角形角平分线定理证明

  • 商洛在线
  • 2022-08-29 21:23:18
  • 来源:中商网

性质是角平分线可以得到两个相等的角,角平分线上的点到角两边的距离相等。

1、角平分线的性质主要有角的平分线上的点到角的两边的距离相等,是指点到直线的距离,在应用时必须含有垂直这个条件 否则不能得到线段相等,外角平分线上的点到角两边的反向延长线的距离相等,角的平分线上的点到角的两边的距离相等。

2、三角形内角平分线的性质定理是三角形的内角平分线内分对变成两条线段,那么这两条线段与这个角的两边对应成比例,三角形内角平分线的判定定理是在⊿ABC中,若点D按照边AB和边AC的比内分边BC,则线段AD是∠BAC的平分线。

3、三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和与对边交点的线段叫作三角形的角平分线也叫三角形的内角平分线,由定义可知三角形的角平分线是一条线段,由于三角形有三个内角所以三角形有三条角平分线,三角形的角平分线交点一定在三角形内部。

在学习角平分线的轴对称之前,学习了全等三角形,因此很多同学都习惯性地利用全等三角形解题,不知道如何正确使用角平分线的性质定理或判定定理进行解题。本篇主要介绍角平分线的基本定义,角平分线的性质与角平分线的判定,学会用数学语言进行证明,而不是所有的题目都依靠全等三角形。

角平分线的定义:知一推一

角平分线的定义,相信大家都不陌生,从一个角的顶点引出一条射线(线在角内),把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。在定义中,已知角平分线,得到两个角相等,即“知一推一”,知道一个条件,推出一个结论。

通过角平分线的基本概念,可以得到两个角的数量关系,两个角相等,或者小角是大角的一半,或者大角是小角的两倍。

角平分线的性质定理:知三推一

角平分线的概念基本不会出错,但是很多同学不会使用角平分线的性质定理与判定定理。角平分线的性质定理:角平分线上的点到角两边的距离相等。这句话中有两个重点:(1)角平分线上的点;(2)距离,得到的结论是相等。

由1个角平分线+2个垂直得到线段相等,三个条件缺一不可。并且要注意的是,由角平分线的性质定理不能直接得到线段OA=OB,如果要得到这个结论,需要证明△PAO≌△PBO。

例题1:已知CD是△ABC的角平分线,DE⊥BC,垂足为E,若AC=4,BC=10,△ABC的面积为14,求DE的长.

分析:过点D作DF⊥AC交CA的延长线于点F,利用角平分线的性质得到DF=DE。再利用三角形面积公式得到1/2×DE×10+1/2×DF×4=14,然后解方程即可。

角平分线的判定定理:知三推一

角平分线的判定定理:到角两边距离相等的点在角的平分线上,这句话有两个重点:(1)距离;(2)相等,得到的结论为该点在角平分线上。与角平分线的性质定理一样,也是只三推一。

由两个垂直+一个垂线段相等,可以推到角平分线。

例题2:已知:BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:PA平分∠MAN.

分析:作PD⊥BC于点D,根据角平分线的性质得到PM=PD,PN=PD,得到PM=PN,根据角平分线的判定定理证明即可。本题完全可以借助角平分线的性质定理和判定定理进行证明,不需要利用全等三角形。

例题3:已知:在Rt△ABC中,∠ACB=90°,∠B=60°,AD,CE是角平分线,AD与CE相交于点F,FM⊥AB,FN⊥BC,垂足分别为M,N.求证:FE=FD.

分析:根据条件可得到FM=FN,再根据角的度数可求得∠NEF=75°=∠MDF,可证明△EFM≌△DFN,可得到FE=FD。

全等三角形太难了?那是因为你还没有掌握这些常见模型和辅助线

初二暑假预习,全等三角形在初中几何中的重要位置,难点的开端

全等三角形之截长补短法,遇到AB+CD=EF这类题目怎么办?

标签: 角平分线的性质 三角形角平分线定理证明 角平分线平分对边吗 角平分线的定义有哪些



推荐More